

TOMORROW starts here.

IPv6 Security: Threats and Mitigation

BRKSEC-2003

Eric Vyncke, Distinguished Engineer @evyncke

Agenda

- Debunking IPv6 Myths
- Shared Issues by IPv4 and IPv6
- Specific Issues for IPv6
 - Extension headers, IPsec everywhere, tunneling techniques
- Enforcing a Security Policy in IPv6
 - ACL, firewalls, IPS, Content security
- Enterprise Secure Deployment
 - Secure IPv6 transport over public network
- Summary

Experiment with IPv6 over WLAN at Cisco Live

IPv6 Security Myths...

53

11 III

Bm

DODD

IPv6 Myths: Better, Faster, More Secure

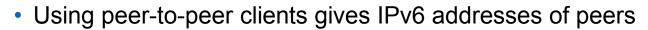
Source: Microsoft clip-art gallery

Sometimes, newer means better and more secure

Sometimes, experience IS better and safer!

The Absence of Reconnaissance Myth

- Default subnets in IPv6 have 2⁶⁴ addresses
 - 10 Mpps = more than 50 000 years

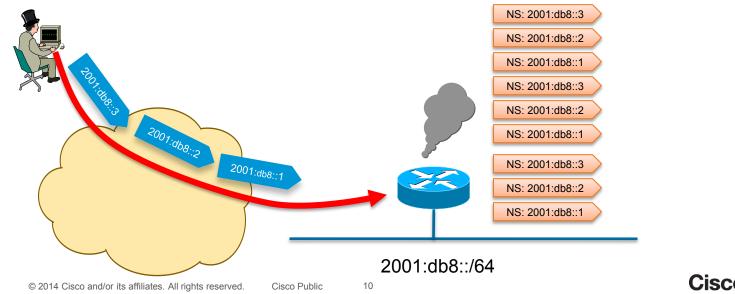


Source: Microsoft clip-art gallery

Reconnaissance in IPv6 Scanning Methods Will Change

- If using EUI-64 addresses, just scan 248
 - Or even 224 if vendor OUI is known...
- Public servers will still need to be DNS reachable
 - More information collected by Google...
- Increased deployment/reliance on dynamic DNS
 - More information will be in DNS

- Administrators may adopt easy-to-remember addresses
 .:1,::80,::F00D, ::C5C0, :ABBA:BABE or simply IPv4 last octet for dual-stack
- By compromising hosts in a network, an attacker can learn new addresses to scan



Source: Microsoft clip-art gallery

Scanning Made Bad for CPU Remote Neighbor Cache Exhaustion

- Potential router CPU/memory attacks if aggressive scanning
 - Router will do Neighbor Discovery... And waste CPU and memory
- Local router DoS with NS/RS/...

BRKSEC-2003

Mitigating Remote Neighbor Cache Exhaustion

- Built-in rate limiter with options to tune it
 - Since 15.1(3)T: ipv6 nd cache interface-limit
 - Or IOS-XE 2.6: ipv6 nd resolution data limit
 - Destination-guard is part of First Hop Security phase 3
 - Priority given to refresh existing entries vs. discovering new ones
- Using a /64 on **point-to-point links** => a lot of addresses to scan!
 - Using /127 could help (RFC 6164)
- Internet edge/presence: a target of choice
 - Ingress ACL permitting traffic to specific statically configured (virtual) IPv6 addresses only
- Using infrastructure ACL prevents this scanning
 - iACL: edge ACL denying packets addressed to your routers
 - Easy with IPv6 because new addressing scheme ③

http://www.insinuator.net/2013/03/ipv6-neighbor-cache-exhaustion-attacks-risk-assessment-mitigation-strategies-part-1

For Your

The IPsec Myth: IPsec End-to-End will Save the World

- "IPv6 mandates the implementation of IPsec"
- Some organizations believe that IPsec should be used to secure all flows...

"Security expert, W., a professor at the University of <foo> in the UK, told <newspaper> the new protocol system – IPv6 – comes with a security code known as IPSEC that would do away with anonymity on the web.

If enacted globally, this would make it easier to catch cyber criminals, Prof W. said."

The IPsec Myth: IPsec End-to-End will Save the World

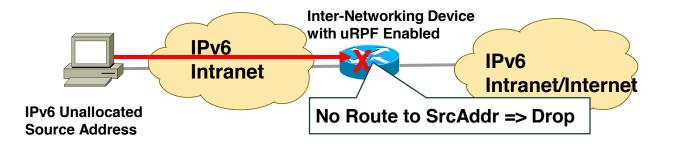
- IPv6 originally mandated the implementation of IPsec (but not its use)
- Now, RFC 6434 "IPsec SHOULD be supported by all IPv6 nodes"
- Some organizations still believe that IPsec should be used to secure all flows...
 - Need to trust endpoints and end-users because the network cannot secure the traffic: no IPS, no ACL, no firewall
 - Network telemetry is blinded: NetFlow of little use
 - Network services hindered: what about QoS or AVC ?

Recommendation: do not use IPsec end to end within an administrative domain.

Suggestion: Reserve IPsec for residential or hostile environment or high profile targets <u>EXACTLY</u> as for IPv4

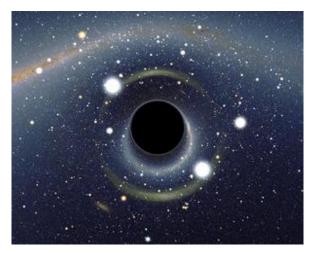
Shared Issues

53


an

BBDD

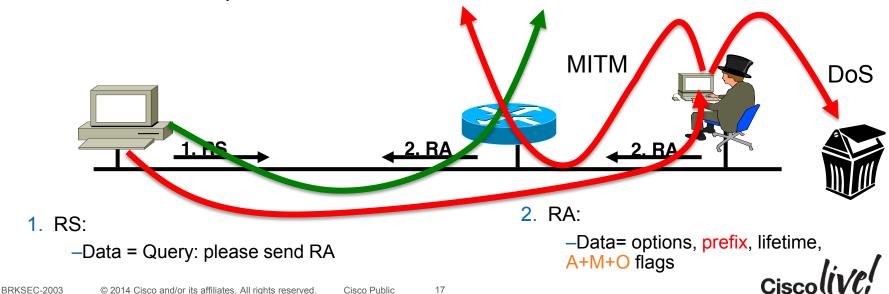
IPv6 Bogon and Anti-Spoofing Filtering


- Bogon filtering (data plane & BGP route-map): <u>http://www.cymru.com/Bogons/ipv6.txt</u>
- Anti-spoofing = uRPF

Remote Triggered Black Hole

- RFC 5635 RTBH is easy in IPv6 as in IPv4
- uRPF is also your friend for black hole-ing a source
- RFC 6666 has a specific discard prefix
 - 100::/64

Source: Wikipedia Commons

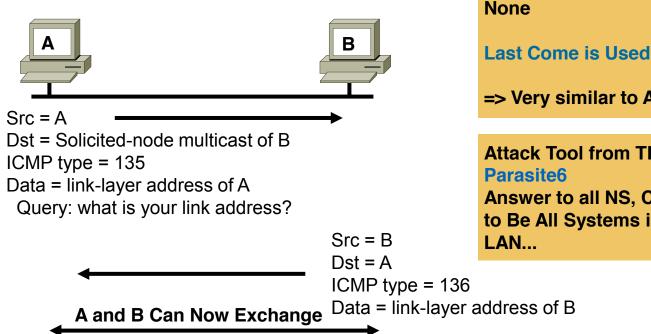

http://www.cisco.com/web/about/security/intelligence/ipv6_rtbh.html

Neighbor Discovery Issue#1 StateLess Address AutoConfiguration SLAAC Rogue Router Advertisement

Router Advertisements (RA) contains:

- Prefix to be used by hosts
- Data-link layer address of the router
- Miscellaneous options: MTU, DHCPv6 use, ...

RA w/o Any Authentication Gives Exactly Same Level of Security as DHCPv4 (None)



Neighbor Discovery Issue#2 Neighbor Solicitation

Packets on This Link

© 2014 Cisco and/or its affiliates. All rights reserved.

BRKSEC-2003

Cisco Public

18

Security Mechanisms Built into Discovery Protocol =

=> Very similar to ARP

Attack Tool from THC: Parasite6 Answer to all NS, Claiming to Be All Systems in the LAN...

ARP Spoofing is now NDP Spoofing: Mitigation

- GOOD NEWS: First-Hop-Security for IPv6 is available
 - First phase (Port ACL & RA Guard) available since Summer 2010
 - Second phase (NDP & DHCP snooping) available since Summer 2011
 - Third phase (Source Guard, Destination Guard) available since Summer 2013
 - http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-first_hop_security.html
- (kind of) GOOD NEWS: Secure Neighbor Discovery
 - SeND = NDP + crypto
 - IOS 12.4(24)T
 - But not in Windows 7, 2008, 2012 and 8, Mac OS/X, iOS, Android

Other GOOD NEWS:

- Private VLAN works with IPv6
- Port security works with IPv6
- IEEE 801.X works with IPv6 (except downloadable ACL)

ICMPv4 vs. ICMPv6

- Significant changes
- More relied upon

ICMP Message Type	ICMPv4	ICMPv6
Connectivity Checks	Х	Х
Informational/Error Messaging	Х	Х
Fragmentation Needed Notification	Х	Х
Address Assignment		Х
Address Resolution		Х
Router Discovery		Х
Multicast Group Management		Х
Mobile IPv6 Support		Х

=> ICMP policy on firewalls needs to change

IPv6 Attacks with Strong IPv4 Similarities

Sniffing

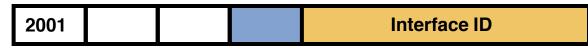
IPv6 is no more or less likely to fall victim to a sniffing attack than IPv.

Good news IPv4 IPS signatures can be re-used

- Application layer attacks
 - The majority of vulnerabilities on the Internet today are at the application layer, something that IPSec will do nothing to prevent
- Rogue devices
 - Rogue devices will be as easy to insert into an IPv6 network as in IPv4
- Man-in-the-Middle Attacks (MITM)
 - Without strong mutual authentication, any attacks utilizing MITM will have the same likelihood in IPv6 as in IPv4
- Flooding
 - Flooding attacks are identical between IPv4 and IPv6

Specific IPv6 Issues

53


an

DODD

IPv6 Privacy Extensions (RFC 4941) AKA Temporary Addresses

/23 /32 /48 /64

- Temporary addresses for IPv6 host client application, e.g. web browser
 - Inhibit device/user tracking
 - Random 64 bit interface ID, then run Duplicate Address Detection before using it
 - Rate of change based on local policy
- Enabled by default in Windows, Android, iOS 4.3, Mac OS/X 10.7

Recommendation: Use Privacy Extensions for External Communication but not for Internal Networks (Troubleshooting and Attack Trace Back)

Disabling Privacy Extension

- Microsoft Windows
 - Deploy a Group Policy Object (GPO)

– Or

netsh interface ipv6 set global randomizeidentifiers=disabled netsh interface ipv6 set global randomizeidentifiers=disabled store=persistent netsh interface ipv6 set privacy state=disabled store=persistent

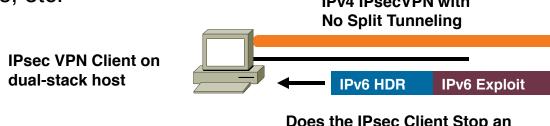
- Alternatively disabling stateless auto-configuration and force DHCPv6
 - Send Router Advertisements with
 - all prefixes with A-bit set to 0 (disable SLAAC)
 - M-bit set to 1 to force stateful DHCPv6
 - Use DHCP to a specific pool + ingress ACL allowing only this pool

```
interface fastEthernet 0/0
ipv6 nd prefix default no-autoconfig
ipv6 dhcp server . . . (or relay)
ipv6 nd managed-config-flag
```


Is there NAT for IPv6 ? - "I need it for security"

- Network Prefix Translation, RFC 6296,
 - 1:1 stateless prefix translation allowing all inbound/outbound packets.
 - Main use case: multi-homing
- Else, IETF has not specified any N:1 stateful translation (aka overload NAT or NAPT) for IPv6
- Do not confuse stateful firewall and NAPT* even if they are often co-located
- Nowadays, NAPT (for IPv4) does not help security
 - Host OS are way more resilient than in 2000
 - Hosts are mobile and cannot always be behind your 'controlled NAPT'
 - Malware are not injected from 'outside' but are fetched from the 'inside' by visiting weird sites or installing any trojanized application

NAPT = Network Address and Port Translation


IPv4 to IPv6 Transition Challenges

- 16+ methods, possibly in combination
- Dual stack
 - Consider security for both protocols
 - Cross v4/v6 abuse
 - Resiliency (shared resources)
- Tunnels
 - Bypass firewalls (protocol 41 or UDP)
 - Can cause asymmetric traffic (hence breaking stateful firewalls)

Dual Stack Host Considerations

- Host security on a dual-stack device
 - Applications can be subject to attack on both IPv6 and IPv4
 - Fate sharing: as secure as the least secure stack...
- Host security controls should block and inspect traffic from both IP versions
 - Host intrusion prevention, personal firewalls, VPN clients, etc.
 IPv4 IPsecVPN with

Does the IPsec Client Stop an Inbound IPv6 Exploit?

Dual Stack with Enabled IPv6 by Default

- Your host:
 - IPv4 is protected by your favorite personal firewall...
 - IPv6 is enabled by default (Windows7 & 8.x , Linux, Mac OS/X, ...)
- Your network:
 - Does not run IPv6
- Your assumption:
 - I'm safe
- Reality
 - You are <u>not</u> safe
 - Attacker sends Router Advertisements
 - Your host configures silently to IPv6
 - You are now under IPv6 attack

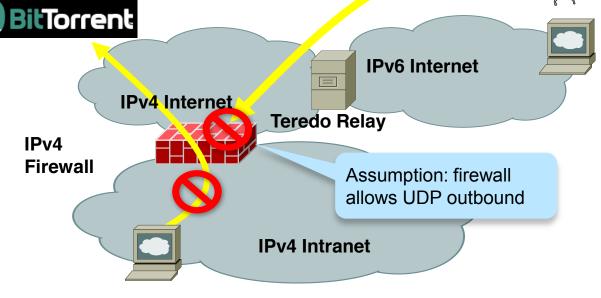
=> Probably time to think about IPv6 in your network

Vulnerability Scanning in a Dual-Stack World

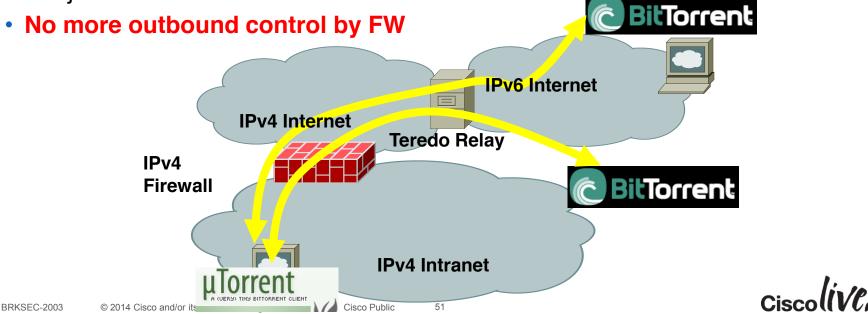
- Finding all hosts:
 - Address enumeration does not work for IPv6
 - Need to rely on DNS or NDP caches or NetFlow
- Vulnerability scanning
 - IPv4 global address, IPv6 global address(es) (if any), IPv6 link-local address
 - Some services are single stack only (currently mostly IPv4 but who knows...)
 - Personal firewall rules could be different between IPv4/IPv6
- IPv6 vulnerability scanning MUST be done for IPv4 & IPv6 even in an IPv4only network
 - IPv6 link-local addresses are active by default

TEREDO?

- Teredo navalis
 - A shipworm drilling holes in boat hulls
- Teredo Microsoftis
 - IPv6 in IPv4 punching holes in NAT devices
 - RFC 4380

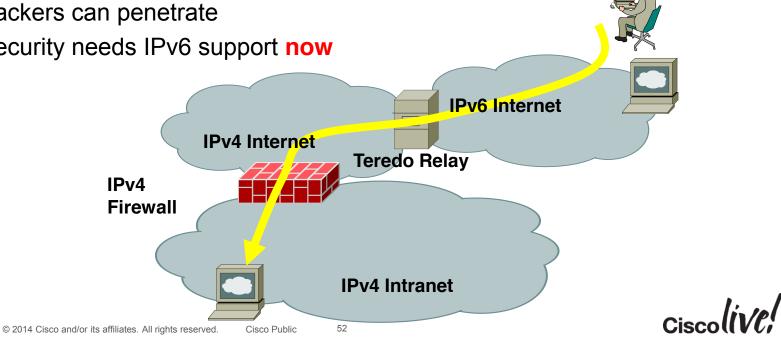

Source: United States Geological Survey

Teredo Tunnels (1/3) Without Teredo: Controls Are in Place


- All outbound traffic inspected: e.g., P2P is blocked
- All inbound traffic blocked by firewall

Teredo Tunnels (2/3) No More Outbound Control

- Internal users wants to get P2P over IPv6
- Configure the Teredo tunnel (already enabled by default!)
- FW just sees IPv4 UDP traffic



Teredo Tunnels (3/3) No More Outbound Control

- Inbound connections are allowed
- IPv4 firewall unable to control
- IPv6 hackers can penetrate

BRKSEC-2003

Host security needs IPv6 support now

Is it Real? See Windows uTorrent, or ...

Fichiers 🛛 🍎

Ð	Général	👸 Trackers	🐸 Clients	🥞 Pi	èces	🔚 Fichiers	2
IΡ					Logi	ciel client	
	2002:53e	1:661c::53e1:6	61c		μΤο	rrent 1.8.2	
	2002:585	3:3a0f:0:20a:9	Sff:fed1:5c2e		Tran	nsmission 1.51	
	2002:59d	4:b885::59d4:b	0885		μΤο	rrent 1.8.2	
	2002:773	0:ce96::7730:c	e96		μΤο	rrent 1.8.2	
	2002:bec	5:9619::bec5:9	619		BitT	orrent 6.1.2	
	2a01:e34	:ee07:a7d0:68)	7a:e559:4aaf:	556f	μΤο	rrent 1.8.2	
	2a01:e34	:ee4b:b570:450	c1:5889:9c6b:	a9d2	BitT	orrent 6.1.1	
	2a01:e35	:1380:d200:a1	3e:1919:8e4e	:be93	BitT	orrent 6.1.2	
	2a01:e35	:242c:e500:108	87:f807:2aa3:	64e6	μΤο	rrent 1.8.1	
	2a01:e35	:243e:b430:29	eb:c2f9:f86d:3	329b	μΤο	rrent 1.8.2	
	2a01:e35	:2e37:5670:25	ef:9941:1d10:	c6bc	μΤο	rrent 1.8.2	
	2a01:e35	:2e58:bd30:2c5	5e:c2c2:d040:	8d0	μΤο	rrent 1.8.2	
	2a01:e35	:2e60:89b0:96;	:8b64:1b3c:do	ас	μΤο	rrent 1.8.2	
	2a01:e35	:2e76:d200:78	88:4fb8:6adc:	54a9	BitT	orrent 6.1.2	
	2a01:e35	:2e87:f40:c947	':2f74:f5c7:cc'	99	μΤο	rrent 1.8.2	
	2a01:e35	:2e9d:ce10:389	9a:378:a7c7:a	715	μΤο	rrent 1.8.2	
	2a01:e35	:2eb5:2820:22	1:e9ff:fee5:a3	32d	μΤο	rrent Mac 0.9.	1
	2a01:e35	:2f24:7990:ad1	l5:fc01:6907:4	4b07	μΤο	rrent 1.8.2	
	2a01:e35	:8a17:4c70:6c5	5b:3560:b117:	49a5	BitT	orrent 6.1.2	
	2a01:e35	:8a85:e8f0:d51	l4:7e66:7db:8	1c8	μΤο	rrent 1.8.2	
	2a01:e35	:8b43:4c80:e51	16:cab2:f9af:b	eec	μΤο	rrent 1.8.2	

Note: on Windows Teredo is: - Disabled when firewall is disabled - Disabled when PC is part of AD Domain

Else enabled

- User can override this protection

Important to know:

Microsoft wants to phase out Teredo Relays but keep **Teredo Servers** http://www.ietf.org/proceedings/88/slides/slides-88v6ops-0.pdf Mainly for Xbox one

Summary

53

l Cini

DODD

PPR

7

Key Take Away

So, nothing really new in IPv6

- Reconnaissance: address enumeration replaced by DNS enumeration
- Spoofing & bogons: uRPF is our IP-agnostic friend
- NDP spoofing: RA guard and FHS Features
- ICMPv6 firewalls need to change policy to allow NDP
- Extension headers: firewall & ACL can process them
- NGIPS / NGFW can detect & filter applications over IPv6
- Lack of operation experience may hinder security for a while: Training is required
- Security enforcement is possible
 - Control your IPv6 traffic as you do for IPv4
- Leverage IPsec to secure IPv6 when suitable
- Experiment with IPv6 here at Cisco Live!

Thank you.

111

#