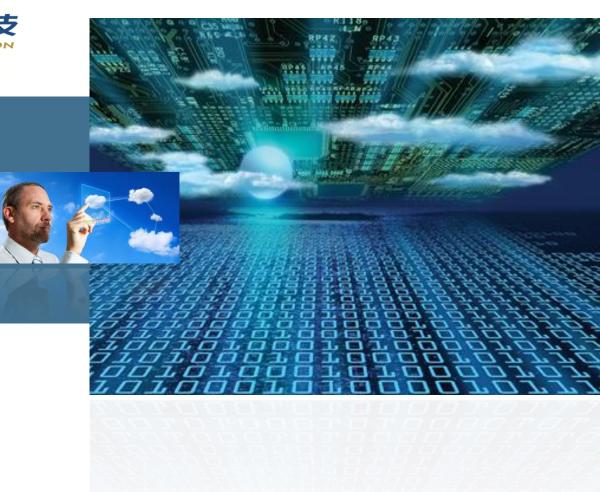


雲端運算概念與發展

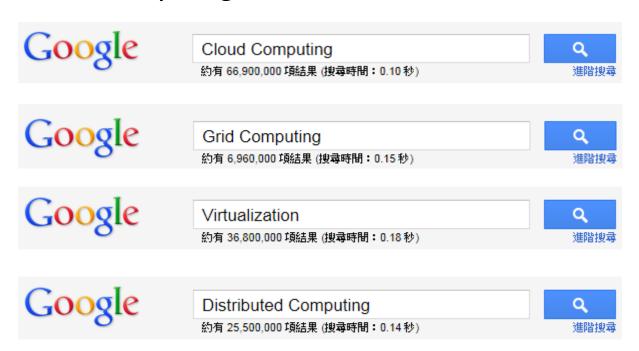
林震坤


Francis_lin@ringline.com.tw

簡報大綱

- 雲端歷史演進
- 雲端未來發展
- Q&A

雲端 歷史演進



何謂雲端運算?

雲端熱門程度

- 2007年沒人知道『雲端運算』
- 2010年
 - Cloud Computing 30,000,000筆
 - Grid Computing 7,000,000筆
 - Virtualization 12,000,000筆
 - Distributed Computing 11,000,000筆
- 現在

2008年

- 雲端一夕爆紅
- 硬體廠商
 - Intel、Cisco、NetApp、HP、IBM、...等
- 軟體廠商
 - VMware、Redhat、Microsoft、…等
- 網際網路服務供應商
 - Google、Salesforce、Amazon、…等
- 電信巨頭
 - AT&T、中華電信、中國移動、...等

五花八門的雲端服務

AaaS Architecture as a Service

BaaS Business as a Service

CaaS Computing as a Service

DaaS Data as a Service

DBaaS Database as a Service

EaaS Ethernet as a Service

FaaS Frameworks as a Service

GaaS Globalization or Governance as a Service

HaaS Hardware as a Service

Information as a Service

laaS

IMaaS

IDaaS Identity as a Service

LaaS Lending as a Service

MaaS Mashups as a Service

OaaS Organization or Operations as a Service

SaaS

PaaS Platform as a Service

• TaaS

Technology or Testing as a Service

VaaS
 Voice as a Service

引用自:

https://www.ibm.com/developerworks/mydeveloperworks/blogs/sbose/entry/gathering_clouds_of_xaas

Software or Storage as a Service

Infrastructure or Integration as a Service

五花八門的雲端產品

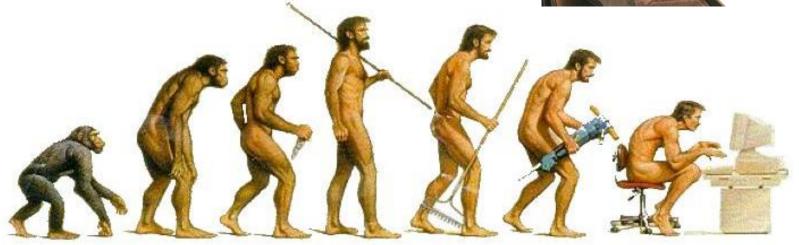
- 雲端運算、雲端伺服器、雲端防毒、雲端ERP、 雲端儲存、雲端安全、雲端備份、雲端災難備援
- 雲端印表機、雲端印刷
- 稀奇古怪雲端產品、產業孕育而生
 - 雲端咖啡、雲端餐廳、雲端筆記本、雲端計時、雲端手錶、雲端海鮮、雲端雞排、雲端女友

專家們對雲端運算的看法

· 美國國家技術標準局 NIST

雲端運算是一個模式,能便利地隨需透過網路存取設定好的共享運算資源池(如網路、伺服器、儲存裝置、應用程式與各類服務)。可以最少的管理工作或服務供應商互動,進行快速配置和發佈。

• 維基百科


- 是一種基於網際網路運算的新方式,透過網際網路上的服務為個人和企業使用者提供按需即取的運算。由於資源是在網際網路上,而在電腦流程圖中,網際網路常以一個雲狀圖案來表示,因此可以形象地類比為雲端,『雲端』同時也是對底層基礎設施的一種抽象概念。"
- 雲端運算的資源是動態 <u>易擴充套件</u>而且<u>虛擬化</u>的,透過 網際網路提供。 終端使用者不需要了解「雲端」中基礎設施的細節,不必具有相應的專 業知識,也無需直接進行控制,只關注自己真正需要什麼樣的資源以及 如何透過網路來得到相應的服務。

專家們對雲端運算的看法

組織	定義
NIST	雲端運算是一個模式,能便利地隨需透過網路存取設定好的共享運算資源池(如網路、伺服器、儲存裝置、應用程式與各類服務)。可以最少的管理工作或服務供應商互動,進行快速配置和發佈。
Gartner	雲端運算是一種具備大量且可擴充之IT相關能力的運算,透過網際網路技術並服務的方式(as a service)提供給外部的使用者。
Forrester	雲端運算是一種具有高度彈性、抽象的運算中心,可以提供使用者所需要的應用程 式,並可依據資源使用多寡來收費。
IDC	雲端運算是一種即時的IT能力運算網路平台,可被請求、被供應、被傳遞以及被消費。
Google	應用程式和資料在雲端,可以透過任何裝置存取,使用瀏覽器在網雲間相互連通。
Mircosoft	一種由微軟資料中心供應的網路雲端服務平台,可提供一套作業系統和一組程式開 發者服務,可供個人或群體操作。
IBM	雲端運算是種分享的網路資訊服務的模式,使用者看到的只有服務本身,不用關心 相關基礎的建置。
Wikipedia	雲端運算是種能夠將動態伸縮的虛擬化資源,透過網路以服務的方式提供給使用者 的運算模式,使用者不需要知道如何管理那些支援雲端運算的基礎設施

運算模式的發展歷史

世界上第一台大型主機誕生

- 1964年4月7日,IBM推出了System/360系列大型主機,這個劃時代的創新改變了商業界、科學界、政府以及IT界本身。
- System/360系列大型主機在當時被看做是一次豪賭·IBM為此投資50億美元(相當於現在的340億美元)打造了6台互助兼容性計算機和40台外設,並且還能夠進行組合擴展。
- 主機價格昂貴

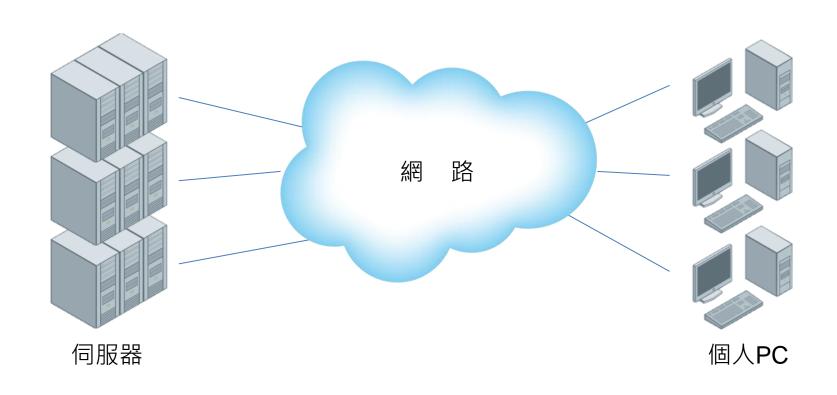
國人的驕傲

小教授一號(MPF I)是一款在1981年上市發表的個人電腦。它是宏碁(當時英文品牌名叫Multitech)的第一種品牌電腦產品,並可能是世界上賣得最久的電腦之一。直到2011年,它仍被位於英國南安普敦的Flite電子國際[3]製造販售,小教授一號是一種很易學易用的訓練系統。

資料來源:維基百科

PC教父施振榮:台灣使PC普及全球

1970 年代


過去二十五年PC產業,如果沒有台灣的話?

- 沒有台灣,我認為普及性會遲緩很多。因為台灣在全球分工體系,剛好配合這樣一個開放的產業結構,是一個不斷推進的動力。譬如英特爾的CPU技術出來了,IBM不想跟,康柏有一點成就之後也不想跟。台灣的主機板公司,能做到世界最好的電腦,絕對領先很多品牌公司的產品,品牌就被逼得非跟不可。所以整個資訊產業的變化跟進展的進度,台灣絕對是一個關鍵的動力。應該說,PC能夠這樣廣泛造福全世界人群,台灣功不可沒。
- •台灣PC產業的功勞,還帶動台灣其他很多產業。例如做模具的、做零件的、做外殼的、做IC的,都跟台灣PC業有絕對關係。

資料來源: 2006-09天下雜誌 355期

分散式運算

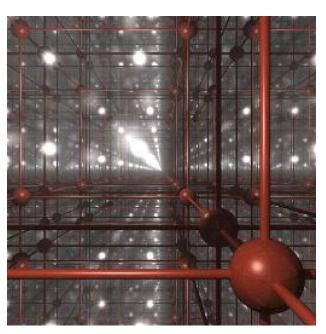


- 分散式運算採用分散式系統,由透過網路連接的多台電腦組成。
- 這些電腦互相協作,共同完成一個工作或運算任務。
- 分散式運算包含:網格運算及雲端運算

超級電腦-深藍

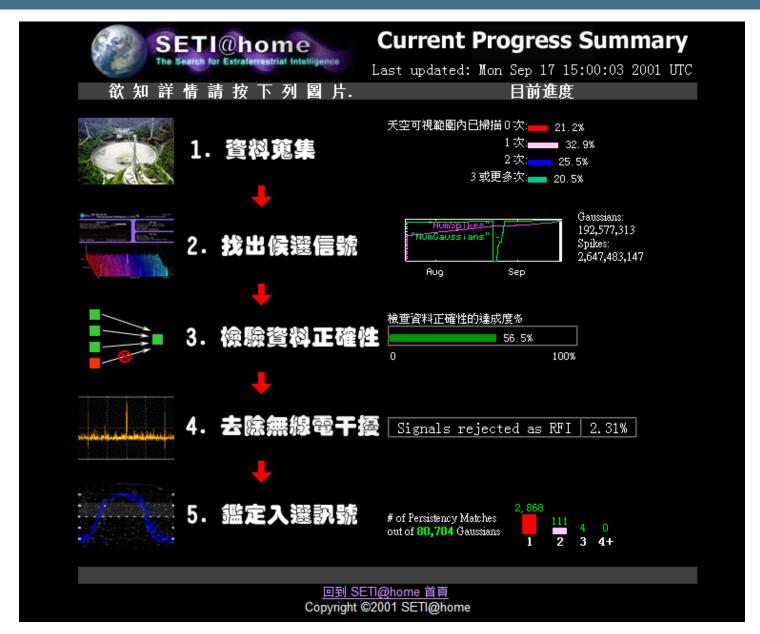
1992年開發專門用以分析國際象棋的深藍超級電腦 1997年國際象棋冠軍卡斯帕羅夫接受IBM"深藍"的挑戰,與他下了6盤棋最終敗北

超級電腦-華生



2011年2月「電腦vs.人腦」益智遊戲大賽經過三天激戰後,IBM的超級電腦華生(Watson,圖中)最終擊敗人類,獲頒100萬美元獎金。IBM將把這筆獎金捐給世界展望會等慈善機構。(美聯社)

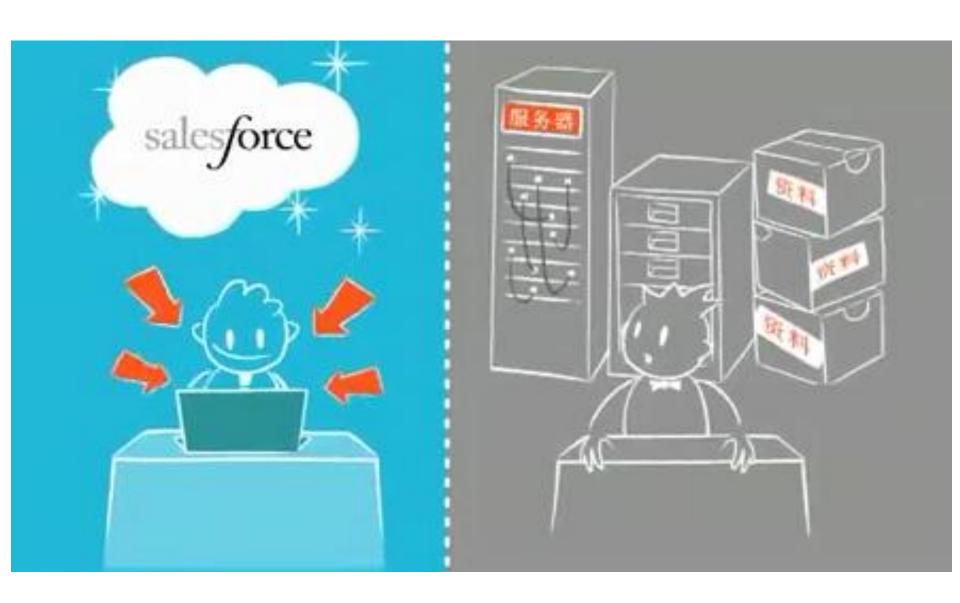
網格運算


Source: http://gridcafe.web.cern.ch/gridcafe/whatisgrid/whatis.html

- Grid Computing主要概念是將包括軟、硬體的分散伺服器資源、資料庫、儲存設備等, 透過網路串聯以組成虛擬的超級電腦,進而分享運算資源。過去網格運算多用於學 術研究中。
- 網格本身誕生於1997年9月美國阿岡(Argonne)國家實驗室「Building a Computational Grid」的研討會上。

網格運算實例

軟體即服務SaaS

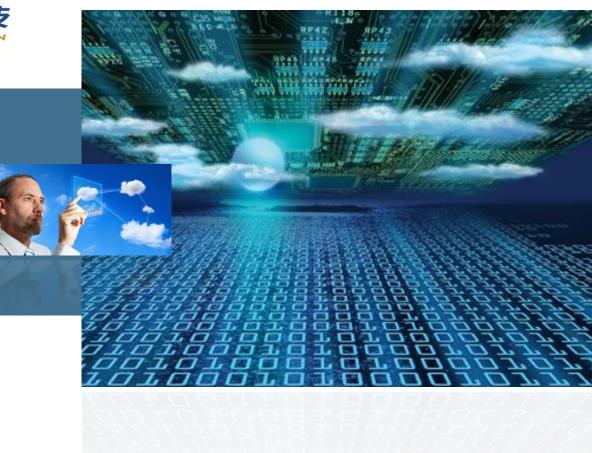


- · SaaS一詞於2000年 出現
- SalesForce發展出 第一套透過網際網 路執行租賃的CRM 客戶管理系統

資料來源:維基百科

雲端運算帶來的效益

雲端運算vs.網格運算



	雲端運算	網格運算
主要推動者	資訊供應商(如Google、Yahoo、IBM 、Amazon等)	學術機構(如歐洲粒子研究中心CERN、中研院、國家高速網路與計算中心)
標準化程度	無標準化,各家採用的技術架構也不同。	有標準化的協定和信任機制
開源幅度	部分開源,目前有開源Hadoop框架, 但Google GFS和資料庫系統BigTable 則未開源。	完全開源
網域限制	企業內部網域	可跨企業、跨管理網域
單一運算叢集 可支援的硬體	相同標準規格的個人電腦 (如x86處理器、硬碟、4GB 記憶體、Linux等)	可混合異質性伺服器(不同處理器、不 同作業系統、不同編譯器版本等)
擅長處理 的資料特性	單次運算資料量小(可於單臺個人電腦 上執行),但需要重複大量處理次數的 應用。	單次運算資料量大的應用。例如單筆數 GB的衛星訊號分析。

資料來源:iThome整理,2008年6月

雲端 未來發展

揭開雲端神秘面紗

從虛擬化邁向雲端的五個階段

資料來源:Gartner提出

雲端運算的五個特徵

□ 按需自助服務(On-demand self-service)

可在客戶需要時配置運算能力,如伺服器時間和網絡存儲空間,無需供應商服務人員介入即可自動依需求提供服務。

□ 廣泛的網絡存取(Broad network access)

通過網絡提供服務,可支援各種標準的連線機制,包括各種精簡或厚實的客戶端(thin or thick client) 平台(如行動電話、行動電腦或PDA),存取其他傳統或以雲為基礎的軟體服務。

□ 資源池(Resource pooling)

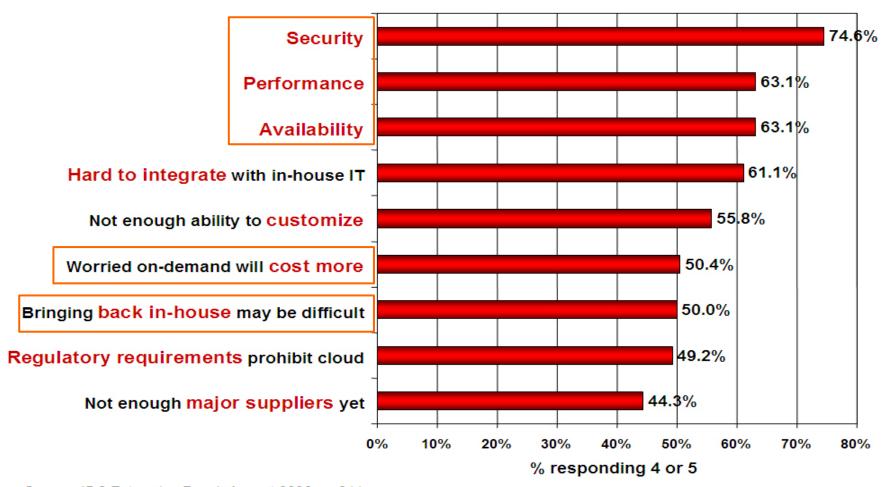
運算資源彙集皆以資源池概念集中管理,使用多重用戶模型,按照使用者需要,將不同的物理和虛 擬資源動態地分配或再分配給多個用戶使用。使用者不需知道資源所在地或來源。資源池範圍包括 存儲、處理、記憶體、網路頻寬以及虛擬機等。

□ 快速且彈性佈署(Rapid elasticity)

服務能力可以自動快速、彈性地供應,實現快速擴容、快速上線。對於使用者來說,可供應的服務 能力近乎無限,可以隨時按需要購買。

□ 被量測監控的服務(Measured Service)

服務可以被監視、控制資源使用、並產生報表,報表可以對提供商和用戶雙方都全然透明的提供。


NIST對雲端的定義

雲端運算平台挑戰

Q: Rate the challenges/issues ascribed to the 'cloud'/on-demand model (1=not significant, 5=very significant)

Source: IDC Enterprise Panel, August 2008 n=244

企業推動雲端的原動力

\$\$省錢\$\$

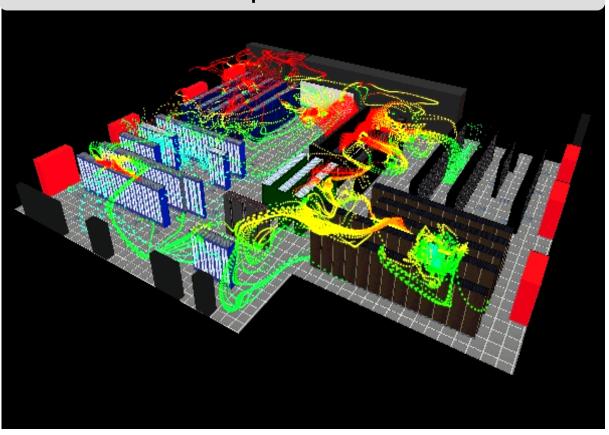
推動雲端的無形力量

雲端運算基本要求

雲端運算必須要有虛擬化

Data Center的改變對綠化帶來的影響

▶ Datacenters 是一座龐大大CO2工廠


- 1 full rack of blade servers = 20-25 kW = peak demand of 30 homes
- ▶每移除一台實體Server~每年可節省4噸的 CO2排放
 - 相當於1.5台車1整年不上路所節省的排放。
- Un-utilized server capacity in the industry equates to:
 - \$140 billion, 3 year supply, more than 20 million servers (IDC)
 - ➤ 每年8千噸CO2排放量,超過南美洲半 數國家每年所排放的CO2。

Sources: IDC, Virtualization 2.0, John Humphreys; http://carma.org/dig/show/world+country

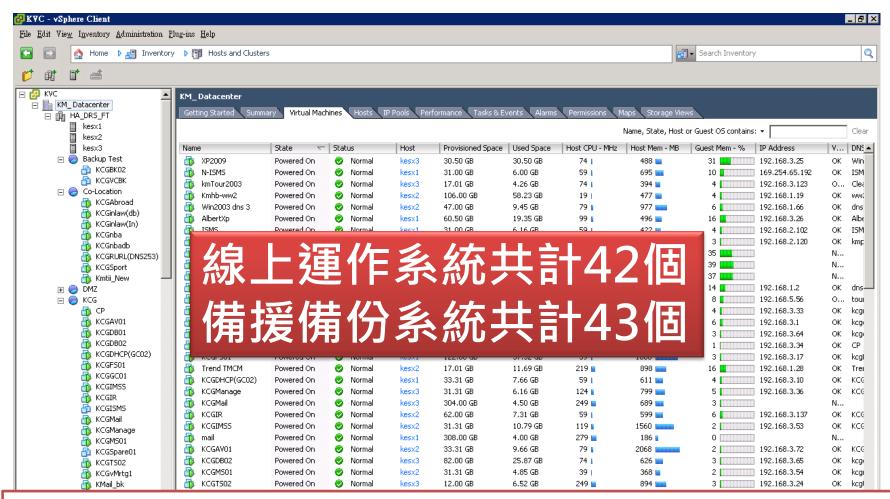
Where Does the Power Go?

Power Consumption in the Datacenter

Server/Storage	50%
Computer Rm. AC	34%
Conversion	7%
Network	7%
Lighting	2%

Compute resources and particularly servers are at the heart of a complex, evolving system!

Source: APC


何謂虛擬化(Virtualization)?

將電腦資源以邏輯群組方式呈現,使用者可以用比原本的組態更好的方式來存取這些虛擬化資源資源(包括CPU、Memory、Storage及Network),這些資源是不受現有資源的架設方式、地域或物理組態所限制。

■ 虛擬化常見技術

實體	虚擬化
作業系統	虛擬機器-VM(Virtual Machine)
應用程式	虛擬應用程式(VMware ThinApp)
儲存設備	儲存虛擬化(Thin Provisioning)
網路設備	網路虛擬化(vSwitch、Cisco Nexus 1000v)
個人電腦	桌面虛擬化-VDI(Virtual Desktop Infrastructure)

虛擬化帶來的效益-實際案例

系統穩定性-自民國98年11月2日(完成升級)~迄今,除98年12月18日配合電力施工廠商"計劃性停機"外,系統運作穩定且沒有任何意外停機狀況。

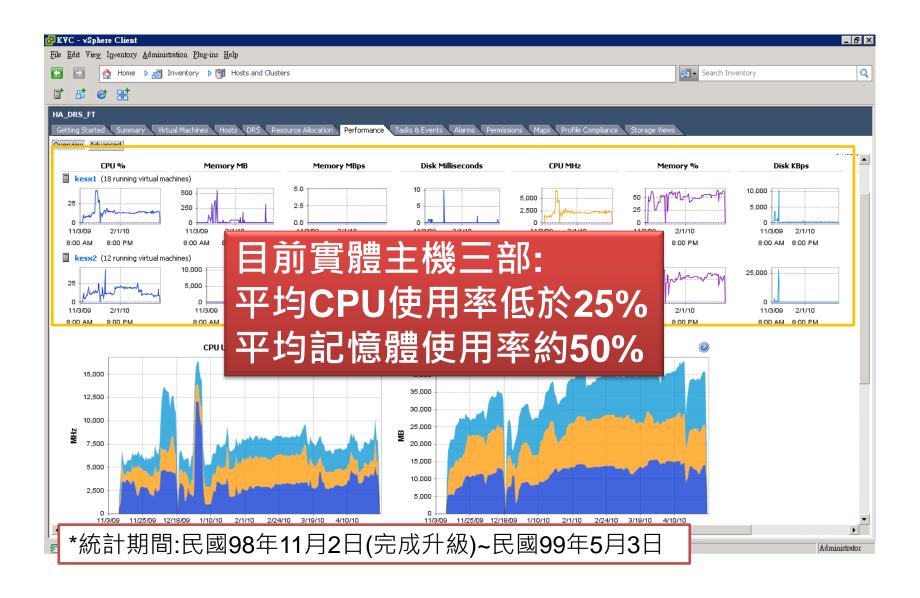
虚擬化平台高可用性

整體系統高可用性=99.73%

Availability (%) = Agreed Service Time (AST) - downtime

* 100%

Agreed Service Time (AST)


Availability (%) = 4368hr(整體服務時間)- 12hr(停機時間) * 100% 4368hr(整體服務時間)

Availability (%) =99.73%

*統計期間:民國98年11月2日(完成升級)~民國99年5月3日(共計182天)。

*98年12月18日配合電力施工廠商"計劃性停機"時間12小時。

主機資源使用狀況

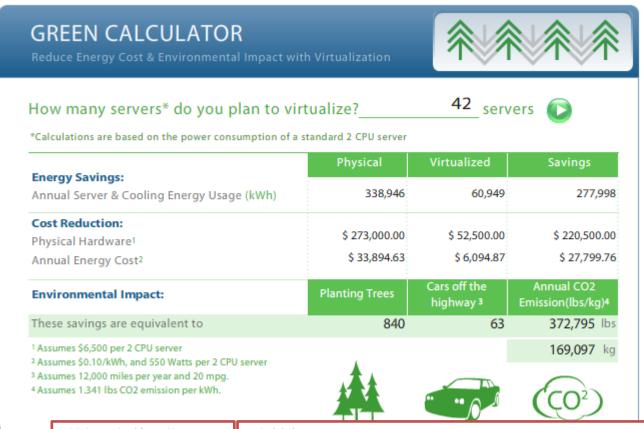
儲存資源使用狀況

主機設備投資效益

- 若單以伺服器主機汰換為議題,並以目前線上系統42個來 計算:
 - 傳統42部主機汰換成本 共計成本NT\$5,865,678 NT\$139,659*42=NT\$5,865,678(不含作業系統)
 - *參照中信局電腦及伺服器-第四組第38項次
 - 虚擬化平台3部主機成本

共計成本NT\$2,009,818

NT\$250,000*3=NT\$750,000(RAM擴充、NIC擴充)


*額外成本虛擬化授權

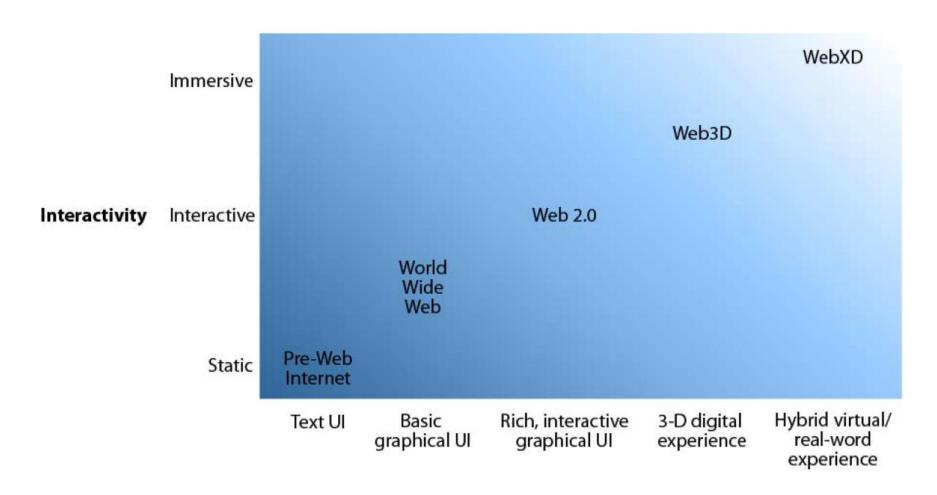
NT\$194,880*6=NT\$1,169,280 NT\$90,538*1=NT\$90,538 節省投資NT\$3,855,860 節省預算67%

^{*}參照中信局電腦軟體第八組系統應用軟體(政府版)-第9、11項次

主機虛擬化節能減碳效益

• 目前線上系統共有42個導入虛擬化平台,每年將節省能源費用約NT\$98萬元,每年也將減少約17噸排碳量!

未使用虛擬化: 每年電費NT\$119萬 每年排碳量21噸


導入虛擬化: 每年電費NT\$21萬 每年排碳量3.7噸

電費節省82% 減少排碳量 82%

*統計圖價格單位USD\$

*資料來源:http://www.vmware.com/solutions/green/calculator.html

未來Web服務發展方向

資料來源:http://www.3d4you.eu/

推動雲端的另一隻手-未來網路

推動雲端的另一隻手-未來網路

- 最新乙太網路規格 802.3ba,是IEEE在2010年5月正式生效,定義了40G與100G資料傳輸速率。
- 包括 Google 與 Facebook 等擁有大型<u>資料中心</u>的公司,都希望最快能在2013年催生Terabit乙太網路,以因應不斷成長的行動與視訊資料;零組件供應商則是偏好較務實的400Gbps方案。
- 未來網路架構需要考慮及滿足下列需求:
 - 可擴展性 (Scalability)
 - 安全性 (Security)
 - 移動性 (Mobility)
 - 服務品質保證 (QoS)
 - 異質性 (Heterogeneity)

Q & A

