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Outline 

• Enabling Technologies for Cloud Computing 

• Social Network Analysis based on Cloud 
Computing 
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Three Enabling Technologies for Cloud 
Computing 

• Networking 

– Data center networks 

• (Mass) Storage 

– BigTable 

• (Parallel and Distributed) Computing 

– MapReduce 

– Google Application Engine 

– Windows Azure 

 

 
4 



5 



6 



7 



Networking for Cloud Computing 
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Common data center interconnect topology. Host to switch links are 
GigE and links between switches are 10 GigE. 
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Current cost estimate vs. maximum possible number 
of hosts for different oversubscription ratios. 

10 



The maximum possible cluster size with an oversubscription 
ratio of 1:1 for different years. 
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Simple fat-tree topology. Using the two-level routing tables 
described in Section 3.3, packets from source 10.0.1.2 to 

destination 10.2.0.3 would take the dashed path. 12 



Fat Trees 

• There are k pods, each containing two layers 
of k/2 switches.  

• Each k-port switch in the lower layer is directly 
connected to k/2 hosts.  

• Each of the remaining k/2 ports is connected 
to k/2 of the k ports in the aggregation layer 
of the hierarchy. 
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Fat Trees 

• There are (k/2)^2 k-port core switches. Each 
core switch has one port connected to each of 
k pods. 

• The i-th port of any core switch is connected 
to pod i such that consecutive ports in the 
aggregation layer of each pod switch are 
connected to core switches on (k/2) strides.  

• In general, a fat-tree built with k-port switches 
supports (k^3)/4 hosts. 
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An Example of Fat-Tree 

• A fat-tree built from 48-port GigE switches 
would consist of 48 pods, each containing an 
edge layer and an aggregation layer with 24 
switches each.  

• The edge switches in every pod are assigned 
24 hosts each. The network supports 27,648 
hosts, made up of 1,152 subnets with 24 hosts 
each.  
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An Example of Fat-Tree 

• There are 576 equal-cost paths between any 
given pair of hosts in different pods.  

• The cost of deploying such a network 
architecture would be $8.64M, compared to 
$37M for the traditional techniques described 
earlier. 
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Two-level table example. This is the table at switch 
10.2.2.1. An incoming packet with destination IP address 

10.2.1.2 is forwarded on port 1, whereas a packet with destination 
IP address 10.3.0.3 is forwarded on port 3. 17 



TCAM two-level routing table implementation. 
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TCAM Implementation 

• The above figure shows our proposed 
implementation of the two-level lookup 
engine.  

• A TCAM stores address prefixes and suffixes, 
which in turn indexes a RAM that stores the IP 
address of the next hop and the output port. 

19 



Distributed Storage for Cloud 
Computing 
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Hadoop Distributed File System 
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Storage-Intensive Applications based 
on BigTable (in 2006) 
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BigTable: A Distributed Storage System 
for Structured Data 
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A slice of an example table that stores Web pages. The row name is a reversed URL. The contents 

column family contains the page contents, and the anchor column family contains the text of any 

anchors that reference the page. CNN's home page is referenced by both the Sports Illustrated and 

the MY-look home pages, so the row contains columns named anchor:cnnsi.com and 

anchor:my.look.ca. Each anchor cell has one version; the contents column has three versions, at 
timestamps t3, t5, and t6. 



B+ Tree for Storing Tablet Location 
Information 
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Google File 
System (GFS) 

Chubby  (a highly-

available and persistent 
distributed lock service) 

BigTable 



GFS and Chubby for BigTable 

• Bigtable uses the distributed Google File 
System (GFS) to store  

– log files and  

– data files 

• Bigtable uses Chubby for a variety of tasks: 

– to ensure that there is at most one active master 
at any time 

– to store the bootstrap location of BigTable data  

26 



GFS and Chubby for BigTable 

– to discover tablet servers and finalize tablet server 
deaths 

– to store Bigtable schema information (the column 
family information for each table); 

– and to store access control lists. 
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Distributed/Parallel Computing for 
Cloud Computing 
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MapReduce 

• Hadoop Map/Reduce is a software framework 
for easily writing applications which process 
vast amounts of data (multi-terabyte data-sets) 
in-parallel on large clusters (thousands of 
nodes) of commodity hardware in a reliable, 
fault-tolerant manner. 
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Map Reduce 
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Input and Output types of a 
Map/Reduce job 

• (input) <k1, v1>  

• -> map -> <k2, v2>  

• -> combine -> <k2, v2>  

• -> reduce -> <k3, v3> (output)  
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Map Reduce Operations (1) 

• The MapReduce library in the user program first 
shards the input files into M pieces of typically 16 
megabytes to 64 megabytes (MB) per piece. It then 
starts up many copies of the program on a cluster of 
machines.  

• One of the copies of the program is special: the 
master. The rest are workers that are assigned work 
by the master. There are M map tasks and R reduce 
tasks to assign. The master picks idle workers and 
assigns each one a map task or a reduce task.  

 
33 



Map Reduce Operations (2) 

• A worker who is assigned a map task reads the 
contents of the corresponding input shard. It parses 
key/value pairs out of the input data and passes each 
pair to the user-defined Map function. The 
intermediate key/value pairs produced by the Map 
function are buffered in memory.  

• Periodically, the buffered pairs are written to local 
disk, partitioned into R regions by the partitioning 
function. The locations of these buffered pairs on the 
local disk are passed back to the master, who is 
responsible for forwarding these locations to the 
reduce workers. 
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Map Reduce Operations (3) 

• When a reduce worker is notified by the master 
about these locations, it uses remote procedure calls 
to read the buffered data from the local disks of the 
map workers. When a reduce worker has read all 
intermediate data, it sorts it by the intermediate keys 
so that all occurrences of the same key are grouped 
together. If the amount of intermediate data is too 
large to fit in memory, an external sort is used. 
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Map Reduce Operations (4) 

• The reduce worker iterates over the sorted 
intermediate data and for each unique intermediate 
key encountered, it passes the key and the 
corresponding set of intermediate values to the 
user's Reduce function. The output of the Reduce 
function is appended to a final output file for this 
reduce partition. 

• When all map tasks and reduce tasks have been 
completed, the master wakes up the user program. 
At this point, the MapReduce call in the user 
program returns back to the user code.  
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MapReduce Java Code Example: 
WordCount v1.0 
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• 1. package org.myorg;  

• 2.  

• 3. import java.io.IOException;  

• 4. import java.util.*;  

• 5.  

• 6. import org.apache.hadoop.fs.Path;  

• 7. import org.apache.hadoop.conf.*;  

• 8. import org.apache.hadoop.io.*;  

• 9. import org.apache.hadoop.mapred.*;  

• 10. import org.apache.hadoop.util.*;  

• 11.  

• 12. public class WordCount {  

• 13.  
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• 14.    public static class Map extends MapReduceBase 
implements Mapper<LongWritable, Text, Text, IntWritable> {  

• 15.      private final static IntWritable one = new IntWritable(1);  

• 16.      private Text word = new Text();  

• 17.      // set type arguments for generic classes 

• 18.      public void map(LongWritable key, Text value, 
OutputCollector<Text, IntWritable> output, Reporter reporter) 
throws IOException {  

• 19.        String line = value.toString();  

• 20.        StringTokenizer tokenizer = new StringTokenizer(line);  

• 21.        while (tokenizer.hasMoreTokens()) {  

• 22.          word.set(tokenizer.nextToken());  

• 23.          output.collect(word, one);  

• 24.        } 
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• 25.      }  

• 26.    }  

• 27.  

• 28.    public static class Reduce extends MapReduceBase 
implements Reducer<Text, IntWritable, Text, IntWritable> {  

• 29.      public void reduce(Text key, Iterator<IntWritable> 
values, OutputCollector<Text, IntWritable> output, Reporter 
reporter) throws IOException {  

• 30.        int sum = 0;  

• 31.        while (values.hasNext()) {  

• 32.          sum += values.next().get();  

• 33.        }  

• 34.        output.collect(key, new IntWritable(sum));  

• 35.      }  

• 36.    } 
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• 37.  

• 38.    public static void main(String[] args) throws Exception {  

• 39.      JobConf conf = new JobConf(WordCount.class); 
40.      conf.setJobName("wordcount");  

• 41.  

• 42.      conf.setOutputKeyClass(Text.class); 
43.      conf.setOutputValueClass(IntWritable.class);  

• 44.  

• 45.      conf.setMapperClass(Map.class); 
46.      conf.setCombinerClass(Reduce.class); 
47.      conf.setReducerClass(Reduce.class); 

• 48.  

• 49.      conf.setInputFormat(TextInputFormat.class); 
50.      conf.setOutputFormat(TextOutputFormat.class); 
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• 51.  

• 52.      FileInputFormat.setInputPaths(conf, new Path(args[0])); 
53.      FileOutputFormat.setOutputPath(conf, new 
Path(args[1]));  

• 54.  

• 55.      JobClient.runJob(conf);  

• 57.    }  

• 58. }  

• 59.  
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Modeling Online Social Network 
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Why trusses are important? 

• Trusses are subgraphs of high connectivity, suitable 
for recognizing clusters of tight interaction in social 
networks.  

• They’re a relaxation of cliques and capture cliques’ 
intent without their many shortcomings.  

– Cliques are computationally intractable intractable. 

– Cliques are unlikely to be found in naturally occurring 
graphs, particularly when only sampled information is 
available, and intersect in ways that make their 
interpretation difficult.  
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Definition of Trusses 

• Specifically, a k-truss is a relaxation of a k-member 
clique and is a nontrivial, single-component maximal 
subgraph, such that every edge is contained in at 
least k - 2 triangles in the subgraph. 

• The use of “nontrivial” here is meant to exclude a 
subgraph that consists only of a single vertex.  

• A clique of k vertices is an example of a k-truss. 
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Challenges of Designing Cloud-
Scale Graph Algorithms 

• Some graph-theoretic problems are simple 
when the graph is small 

• They become non-trivial when the graph 
representation takes more than 4GB RAM 

• Recall that hard disks are too slow for large-
scale computing 

 

48 



Vertex Degree Counting 

• Composed of Two MapReduce jobs 

• In the first MapReduce job, for each input 
record, the map creates two output records, 
one keyed under each vertex in the edge. 

• The reduce takes all edges mapped to a single 
vertex, counts them to obtain the degree, and 
emits a record for each input record, each 
keyed under the edge it represents. 
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Vertex Counting 

• In the second MapReduce job, the identity 
mapper preserves the records unchanged, so 
the records are binned by the edges they 
represent.  

• The reducer combines the partial-degree 
information to produce a complete record, 
which it exports. 

51 



52 



Open Triads and Triangles 

• Enumerating triangles is essentially a two-step 
approach: enumerate open triads (pairs of 
edges of the form {(A, B), (B, C)}) and 
recognize when an edge closes those triads to 
form triangles.  
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An Algorithm for Finding Trusses 

1. Augment the edges with vertex valences. 

2. Enumerate triangles. 

3. For each edge, record the number of triangles 
containing that edge. 

4. Keep only the edges with sufficient support. 

5. If step 4 dropped any edges, return to step 1. 

6. Find the remaining graph’s components; each is a 
truss. 
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