
Introduction to Cloud Computing and
Social Network Analysis

高榮鴻 副教授

國立交通大學

電機工程學系/電信工程研究所

Email: runghung@mail.nctu.edu.tw

1

mailto:runghung@mail.nctu.edu.tw

Outline

• Enabling Technologies for Cloud Computing

• Social Network Analysis based on Cloud
Computing

2

3

Three Enabling Technologies for Cloud
Computing

• Networking

– Data center networks

• (Mass) Storage

– BigTable

• (Parallel and Distributed) Computing

– MapReduce

– Google Application Engine

– Windows Azure

4

5

6

7

Networking for Cloud Computing

8

Common data center interconnect topology. Host to switch links are
GigE and links between switches are 10 GigE.

9

Current cost estimate vs. maximum possible number
of hosts for different oversubscription ratios.

10

The maximum possible cluster size with an oversubscription
ratio of 1:1 for different years.

11

Simple fat-tree topology. Using the two-level routing tables
described in Section 3.3, packets from source 10.0.1.2 to

destination 10.2.0.3 would take the dashed path. 12

Fat Trees

• There are k pods, each containing two layers
of k/2 switches.

• Each k-port switch in the lower layer is directly
connected to k/2 hosts.

• Each of the remaining k/2 ports is connected
to k/2 of the k ports in the aggregation layer
of the hierarchy.

13

Fat Trees

• There are (k/2)^2 k-port core switches. Each
core switch has one port connected to each of
k pods.

• The i-th port of any core switch is connected
to pod i such that consecutive ports in the
aggregation layer of each pod switch are
connected to core switches on (k/2) strides.

• In general, a fat-tree built with k-port switches
supports (k^3)/4 hosts.

14

An Example of Fat-Tree

• A fat-tree built from 48-port GigE switches
would consist of 48 pods, each containing an
edge layer and an aggregation layer with 24
switches each.

• The edge switches in every pod are assigned
24 hosts each. The network supports 27,648
hosts, made up of 1,152 subnets with 24 hosts
each.

15

An Example of Fat-Tree

• There are 576 equal-cost paths between any
given pair of hosts in different pods.

• The cost of deploying such a network
architecture would be $8.64M, compared to
$37M for the traditional techniques described
earlier.

16

Two-level table example. This is the table at switch
10.2.2.1. An incoming packet with destination IP address

10.2.1.2 is forwarded on port 1, whereas a packet with destination
IP address 10.3.0.3 is forwarded on port 3. 17

TCAM two-level routing table implementation.

18

TCAM Implementation

• The above figure shows our proposed
implementation of the two-level lookup
engine.

• A TCAM stores address prefixes and suffixes,
which in turn indexes a RAM that stores the IP
address of the next hop and the output port.

19

Distributed Storage for Cloud
Computing

20

Hadoop Distributed File System

21

Storage-Intensive Applications based
on BigTable (in 2006)

22

BigTable: A Distributed Storage System
for Structured Data

23

A slice of an example table that stores Web pages. The row name is a reversed URL. The contents

column family contains the page contents, and the anchor column family contains the text of any

anchors that reference the page. CNN's home page is referenced by both the Sports Illustrated and

the MY-look home pages, so the row contains columns named anchor:cnnsi.com and

anchor:my.look.ca. Each anchor cell has one version; the contents column has three versions, at
timestamps t3, t5, and t6.

B+ Tree for Storing Tablet Location
Information

24

25

Google File
System (GFS)

Chubby (a highly-

available and persistent
distributed lock service)

BigTable

GFS and Chubby for BigTable

• Bigtable uses the distributed Google File
System (GFS) to store

– log files and

– data files

• Bigtable uses Chubby for a variety of tasks:

– to ensure that there is at most one active master
at any time

– to store the bootstrap location of BigTable data

26

GFS and Chubby for BigTable

– to discover tablet servers and finalize tablet server
deaths

– to store Bigtable schema information (the column
family information for each table);

– and to store access control lists.

27

Distributed/Parallel Computing for
Cloud Computing

28

MapReduce

• Hadoop Map/Reduce is a software framework
for easily writing applications which process
vast amounts of data (multi-terabyte data-sets)
in-parallel on large clusters (thousands of
nodes) of commodity hardware in a reliable,
fault-tolerant manner.

29

30

Map Reduce

31

Input and Output types of a
Map/Reduce job

• (input) <k1, v1>

• -> map -> <k2, v2>

• -> combine -> <k2, v2>

• -> reduce -> <k3, v3> (output)

32

Map Reduce Operations (1)

• The MapReduce library in the user program first
shards the input files into M pieces of typically 16
megabytes to 64 megabytes (MB) per piece. It then
starts up many copies of the program on a cluster of
machines.

• One of the copies of the program is special: the
master. The rest are workers that are assigned work
by the master. There are M map tasks and R reduce
tasks to assign. The master picks idle workers and
assigns each one a map task or a reduce task.

33

Map Reduce Operations (2)

• A worker who is assigned a map task reads the
contents of the corresponding input shard. It parses
key/value pairs out of the input data and passes each
pair to the user-defined Map function. The
intermediate key/value pairs produced by the Map
function are buffered in memory.

• Periodically, the buffered pairs are written to local
disk, partitioned into R regions by the partitioning
function. The locations of these buffered pairs on the
local disk are passed back to the master, who is
responsible for forwarding these locations to the
reduce workers.

34

Map Reduce Operations (3)

• When a reduce worker is notified by the master
about these locations, it uses remote procedure calls
to read the buffered data from the local disks of the
map workers. When a reduce worker has read all
intermediate data, it sorts it by the intermediate keys
so that all occurrences of the same key are grouped
together. If the amount of intermediate data is too
large to fit in memory, an external sort is used.

35

Map Reduce Operations (4)

• The reduce worker iterates over the sorted
intermediate data and for each unique intermediate
key encountered, it passes the key and the
corresponding set of intermediate values to the
user's Reduce function. The output of the Reduce
function is appended to a final output file for this
reduce partition.

• When all map tasks and reduce tasks have been
completed, the master wakes up the user program.
At this point, the MapReduce call in the user
program returns back to the user code.

36

MapReduce Java Code Example:
WordCount v1.0

37

• 1. package org.myorg;

• 2.

• 3. import java.io.IOException;

• 4. import java.util.*;

• 5.

• 6. import org.apache.hadoop.fs.Path;

• 7. import org.apache.hadoop.conf.*;

• 8. import org.apache.hadoop.io.*;

• 9. import org.apache.hadoop.mapred.*;

• 10. import org.apache.hadoop.util.*;

• 11.

• 12. public class WordCount {

• 13.

38

• 14. public static class Map extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

• 15. private final static IntWritable one = new IntWritable(1);

• 16. private Text word = new Text();

• 17. // set type arguments for generic classes

• 18. public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

• 19. String line = value.toString();

• 20. StringTokenizer tokenizer = new StringTokenizer(line);

• 21. while (tokenizer.hasMoreTokens()) {

• 22. word.set(tokenizer.nextToken());

• 23. output.collect(word, one);

• 24. }

39

• 25. }

• 26. }

• 27.

• 28. public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

• 29. public void reduce(Text key, Iterator<IntWritable>
values, OutputCollector<Text, IntWritable> output, Reporter
reporter) throws IOException {

• 30. int sum = 0;

• 31. while (values.hasNext()) {

• 32. sum += values.next().get();

• 33. }

• 34. output.collect(key, new IntWritable(sum));

• 35. }

• 36. }
40

• 37.

• 38. public static void main(String[] args) throws Exception {

• 39. JobConf conf = new JobConf(WordCount.class);
40. conf.setJobName("wordcount");

• 41.

• 42. conf.setOutputKeyClass(Text.class);
43. conf.setOutputValueClass(IntWritable.class);

• 44.

• 45. conf.setMapperClass(Map.class);
46. conf.setCombinerClass(Reduce.class);
47. conf.setReducerClass(Reduce.class);

• 48.

• 49. conf.setInputFormat(TextInputFormat.class);
50. conf.setOutputFormat(TextOutputFormat.class);

41

• 51.

• 52. FileInputFormat.setInputPaths(conf, new Path(args[0]));
53. FileOutputFormat.setOutputPath(conf, new
Path(args[1]));

• 54.

• 55. JobClient.runJob(conf);

• 57. }

• 58. }

• 59.

42

Modeling Online Social Network

43

Why trusses are important?

• Trusses are subgraphs of high connectivity, suitable
for recognizing clusters of tight interaction in social
networks.

• They’re a relaxation of cliques and capture cliques’
intent without their many shortcomings.

– Cliques are computationally intractable intractable.

– Cliques are unlikely to be found in naturally occurring
graphs, particularly when only sampled information is
available, and intersect in ways that make their
interpretation difficult.

44

45

Definition of Trusses

• Specifically, a k-truss is a relaxation of a k-member
clique and is a nontrivial, single-component maximal
subgraph, such that every edge is contained in at
least k - 2 triangles in the subgraph.

• The use of “nontrivial” here is meant to exclude a
subgraph that consists only of a single vertex.

• A clique of k vertices is an example of a k-truss.

46

47

Challenges of Designing Cloud-
Scale Graph Algorithms

• Some graph-theoretic problems are simple
when the graph is small

• They become non-trivial when the graph
representation takes more than 4GB RAM

• Recall that hard disks are too slow for large-
scale computing

48

Vertex Degree Counting

• Composed of Two MapReduce jobs

• In the first MapReduce job, for each input
record, the map creates two output records,
one keyed under each vertex in the edge.

• The reduce takes all edges mapped to a single
vertex, counts them to obtain the degree, and
emits a record for each input record, each
keyed under the edge it represents.

49

50

Vertex Counting

• In the second MapReduce job, the identity
mapper preserves the records unchanged, so
the records are binned by the edges they
represent.

• The reducer combines the partial-degree
information to produce a complete record,
which it exports.

51

52

Open Triads and Triangles

• Enumerating triangles is essentially a two-step
approach: enumerate open triads (pairs of
edges of the form {(A, B), (B, C)}) and
recognize when an edge closes those triads to
form triangles.

53

An Algorithm for Finding Trusses

1. Augment the edges with vertex valences.

2. Enumerate triangles.

3. For each edge, record the number of triangles
containing that edge.

4. Keep only the edges with sufficient support.

5. If step 4 dropped any edges, return to step 1.

6. Find the remaining graph’s components; each is a
truss.

54

Reference

• Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters,” in Proc. The Sixth
Symposium on Operating System Design and Implementation,
2004.

• J. Lin and C. Dyer, Data-Intensive Text Processing with
MapReduce. 2010, Morgan and Claypool Publishers.

• http://hadoop.apache.org/mapreduce/

• http://www.windowsazure.com/zh-tw/

55

http://hadoop.apache.org/mapreduce/
http://www.windowsazure.com/zh-tw/
http://www.windowsazure.com/zh-tw/
http://www.windowsazure.com/zh-tw/

Reference

• Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat,
“A Scalable, Commodity Data Center Network Architecture,” in
Proc. ACM SIGCOMM 2008.

• Jonathan Cohen, “Graph Twiddling in a MapReduce World,”
IEEE Computing in Science and Engineering, pp. 29-41, July
2009.

• Rung-Hung Gau, Tzu-Chiang Hsieh, Sheng-Wen Tsai, and
Ching-Pei Cheng, “An Implementation Framework of
MapReduce Email Social Network Analysis,” in Proc. The 7th
ACM Workshop on Wireless Multimedia Networking and
Computing, pp. 67-69, October 2011.

56

